

■ Scheda Tecnica: SENSORI NOx E PARTICOLATO

AVVERTENZE IMPORTANTI

Assicurarsi che il motore sia **spento e freddo** prima di intervenire. Scollegare la batteria quando previsto dalle procedure del costruttore. Eseguire diagnosi e apprendimento/adattamento quando richiesto dalla casa auto.

Sotto-tipi

- Sensore NOx a ossido di zirconio
- Sensore NOx a cella elettrochimica
- Sensore di particolato (DPF) a pressione differenziale
- Sensore di particolato a luce (opacimetro)

Descrizione generale

I sensori NOx e di particolato monitorano rispettivamente le emissioni di ossidi di azoto e la quantità di particolato nei gas di scarico, fornendo dati essenziali per la gestione del sistema di post-trattamento dei gas e per il rispetto delle normative ambientali.

Anomalie più comuni

Sintomi lato veicolo / utente

- Spia motore accesa (MIL)
- Aumento del consumo di carburante
- Riduzione delle prestazioni motore
- Difficoltà nell'avviamento a freddo
- Emissioni inquinanti elevate
- Rigenerazioni DPF più frequenti o incomplete

Evidenze lato diagnosi / strumento

- Codici di errore relativi a sensori NOx o DPF
- Valori di segnale anomali o assenti dal sensore
- Valori di pressione differenziale fuori range
- Oscillazioni o segnali instabili rilevati con oscilloscopio

Cause principali del guasto

Elettriche

- Cavi o connettori danneggiati o ossidati
- Corto circuito o circuito aperto nel sensore
- Alimentazione elettrica insufficiente o instabile

Meccaniche

- Contaminazione da olio o carburante sul sensore
- Danneggiamento fisico del sensore
- Accumulo eccessivo di fuliggine o depositi sul sensore

Ambientali

- Esposizione a temperature estreme oltre i limiti di esercizio
- Umidità o infiltrazioni d'acqua
- Contaminazione da agenti chimici aggressivi

Software / Adattamento

- Mancata calibrazione dopo sostituzione
- Parametri di adattamento corrotti o non aggiornati

Codici errori più comuni

CODICE	DESCRIZIONE	TIPO
P2201	Sensore NOx circuito guasto	EOBD
P2202	Sensore NOx circuito basso segnale	EOBD
P2203	Sensore NOx circuito alto segnale	EOBD
P242F	Sensore di pressione differenziale DPF guasto	EOBD
P2458	Sensore di particolato DPF circuito guasto	EOBD

Procedura di diagnosi

Attrezzi di prova

- Autodiagnosi
- Oscilloscopio
- Test su cablaggi

Passi operativi

- 1. Collegare lo strumento di diagnosi alla presa OBD-II
- 2. Verificare la presenza di codici di errore relativi ai sensori NOx o particolato
- 3. Monitorare i valori in tempo reale dei sensori durante il funzionamento motore
- 4. Controllare la continuità e la resistenza dei cablaggi con multimetro
- 5. Utilizzare l'oscilloscopio per analizzare il segnale elettrico del sensore
- 6. Verificare la presenza di contaminazioni o danni visibili sul sensore

Procedura di Installazione

- 1. Assicurarsi che il motore sia spento e freddo prima di procedere con la sostituzione del sensore. Evitare contaminazioni durante la manipolazione del sensore.
- 2. Scollegare il connettore elettrico del sensore difettoso
- 3. Rimuovere il sensore utilizzando gli attrezzi appropriati
- 4. Pulire l'area di montaggio da eventuali residui o contaminazioni
- 5. Installare il nuovo sensore avvitandolo con la coppia di serraggio specificata dal costruttore
- 6. Ricollegare il connettore elettrico assicurandosi di un corretto aggancio
- 7. Eseguire la calibrazione o reset dei parametri tramite strumento di diagnosi se previsto

Procedura di test su vettura

- Avviare il motore e portarlo a temperatura di esercizio
- Monitorare i valori del sensore NOx e particolato tramite strumento di diagnosi
- Verificare l'assenza di codici di errore durante il funzionamento
- Effettuare un test su strada per valutare la risposta del sensore in condizioni reali
- Controllare che i valori rilevati siano coerenti con i parametri OEM

Note di sicurezza

- Indossare quanti e occhiali protettivi durante le operazioni di manutenzione
- Evitare il contatto diretto con gas di scarico caldi
- Non utilizzare solventi aggressivi per la pulizia dei sensori
- Seguire sempre le specifiche di coppia di serraggio OEM
- Smaltire i sensori difettosi secondo le normative ambientali vigenti

Technical Sheet: NOx and Particulate Sensors

IMPORTANT WARNINGS

Ensure that the engine is **off and cold** before intervening. Disconnect the battery when required by manufacturer procedures. Perform diagnosis and learning/adaptation when required by the car manufacturer.

Sub-types

- Zirconium oxide NOx sensor
- Electrochemical cell NOx sensor
- Differential pressure particulate sensor (DPF)
- Light particulate sensor (opacity meter)

General Description

- The NOx and particulate sensors monitor respectively the emissions of nitrogen oxides and the amount of particulate matter in the exhaust gases, providing essential data for the management of the exhaust gas aftertreatment system and for compliance with environmental regulations.

Most Common Anomalies

Vehicle / User Side Symptoms

- Check Engine Light On (MIL)
- Increased fuel consumption
- Reduced engine performance
- Difficulty starting in cold conditions
- Elevated pollutant emissions
- More frequent or incomplete DPF regenerations

Diagnostic / Tool Side Evidence

- Error codes related to NOx or DPF sensors
- Abnormal or absent signal values from the sensor
- Differential pressure values out of range
- Oscillations or unstable signals detected with an oscilloscope

Main Causes of Failure

Electrical

- Damaged or oxidized cables or connectors
- Short circuit or open circuit in the sensor
- Insufficient or unstable power supply

Mechanical

- Oil or fuel contamination on the sensor
- Physical damage to the sensor
- Excessive accumulation of soot or deposits on the sensor

Environmental

- Exposure to extreme temperatures beyond operational limits
- Humidity or water ingress
- Contamination from aggressive chemical agents

Software / Adaptation

- Lack of calibration after replacement
- Corrupted or outdated adaptation parameters

Most Common Error Codes

CODE	DESCRIPTION	ТҮРЕ
P2201	NOx sensor circuit malfunction	EOBD
P2202	NOx sensor circuit low signal	EOBD
P2203	NOx sensor circuit high signal	EOBD
P242F	DPF differential pressure sensor malfunction	EOBD
P2458	DPF particulate sensor circuit malfunction	EOBD

Diagnostic Procedure

Test Tools

- Self-diagnosis
- Oscilloscope
- Wiring tests

Operational Steps

- 1. Connect the diagnostic tool to the OBD-II port
- 2. Check for the presence of error codes related to NOx or particulate sensors
- 3. Monitor real-time values of the sensors during engine operation
- 4. Check the continuity and resistance of the wiring with a multimeter
- 5. Use the oscilloscope to analyze the electrical signal from the sensor
- 6. Check for the presence of contamination or visible damage on the sensor

Installation Procedure

- 1. Make sure the engine is off and cold before proceeding with the sensor replacement. Avoid contamination during sensor handling.
- 2. Disconnect the electrical connector of the faulty sensor
- 3. Remove the sensor using the appropriate tools
- 4. Clean the mounting area of any debris or contamination
- 5. Install the new sensor by tightening it to the torque specification provided by the manufacturer
- 6. Reconnect the electrical connector ensuring proper engagement
- 7. Perform calibration or reset of parameters using a diagnostic tool if required

Vehicle Test Procedure

- Start the engine and bring it to operating temperature
- Monitor the values of the NOx and particulate sensors using a diagnostic tool
- Check for the absence of error codes during operation
- Perform a road test to evaluate the sensor's response under real conditions
- Ensure that the recorded values are consistent with OEM parameters

Safety Notes

- Wear gloves and protective eyewear during maintenance operations
- Avoid direct contact with hot exhaust gases
- Do not use aggressive solvents for cleaning sensors
- Always follow OEM torque specifications
- Dispose of defective sensors according to current environmental regulations

